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Abstract

An iterative approach to full vector three-dimensional inverse scattering problems, where the unknown objects can

have conductivity, permittivity and permeability different from the known background medium, is discussed. Since this

problem involves a large number of unknowns, it has to be solved effectively and efficiently so that the results can be

obtained in timely manner. The forward modeling is based on a domain integral equation approach formulated in terms

of the electric and magnetic contrast sources normalized with the characteristic impedance of the background medium.

Our numerical tests indicate that this formulation is prerequisite in order to arrive at a forward solution within an

acceptable number of iterations, and hence it is also of significant importance in the optimization process of the inverse

problem. The inverse scattering problem is attacked using the Multiplicative Regularized Contrast Source Inversion

method as known in the literature. The complexity of this inverse method is approximately equal to the complexity of

two equivalent forward algorithms of the conjugate gradient type. Furthermore, this inverse method has been armed

with a weighted L2-norm regularizer which has been included as a multiplicative constraint. Some representative

numerical testings will be presented to illustrate the ability of the our numerical algorithms.

� 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Two- and three-dimensional electromagnetic inverse scattering problem have been studied with various

optimization methods, in particular, deterministic gradient type methods. Among the huge amount of
literature we only list a few without intention of review: Abubakar and co-authors [2–7,9,30], Barkeshli and
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Lautzenheiser [10], Chew and Wang [13], Franchois and Pichot [14], Habashy and co-authors [15,16,27],

Isernia et al. [18], Kleinman and van den Berg [19], Liu and co-authors [20,36], Zhdanov and Hursan [33].

Furthermore, a more recent development on the three-dimensional electromagnetic forward and inverse
modeling for geophysical applications can be found in [22,34]. All the authors mentioned above handle only

one type of material contrast either electric (conductivity and permittivity) or magnetic (permeability).

There is some work by Gustafsson and He [28] and by Rekanos [24,25] which addresses the simultaneous

reconstruction of the electric and magnetic contrast, but these authors limit themselves to the two-

dimensional case.

In this paper we present an inversion method which can be used to invert the electric and magnetic

contrast of a three-dimensional object, using a full vectorial formulation. Furthermore, unlike in [24,25,28],

we attack the problem using an integral equation approach, which allows one to restrict the computational
domain. This will reduce the number of unknowns. In order to be able to arrive at reconstruction results

within reasonable computational time, we employ the so-called Contrast Source Inversion (CSI) method

[29]. In this CSI method, the unknown contrast sources (the internal fields multiplied by the material

contrasts) and the unknown contrasts are reconstructed by minimization of a cost functional. This cost

functional is the weighted sum of the error norm in the match of the model (integral representation) to the

data and the error norm in satisfying of the integral equation inside the domain of interest. Earlier,

Zhdanov and Chernyak [32] have proposed an inversion scheme based on an (unweighted) sum of these

error norms, but ample experience has shown that the proper weighting is essential to the success of the CSI
method and its application to the present problem. Subsequently, the minimization procedure is carried in

two alternate steps: (1) the contrast sources are updated via a conjugate gradient direction of the cost

functional; (2) the contrasts are found by direct minimization of the appropriate terms in the cost functional

which is equivalent to find the least-square fit of the constitutive relations between the contrast sources and

the fields. In this way the total complexity of each iteration in the CSI method is approximately equal to the

complexity of two iterations of the Conjugate Gradient method of the equivalent forward problem. This is

one of the reasons which allow us to attack a full vectorial three-dimensional electromagnetic inverse

problem with contrast in conductivity, permittivity and permeability.
When the number of data is very limited and a significant noise level is present in the data, which is

always the case in our application, the CSI method will not provide one with a reasonable resolution of the

reconstruction results. Furthermore, the question is how to restore the band limitation of the images we

have obtained with the Contrast Source Inversion method. In image processing, there are a number of

methods to enhance an image by minimization the variation of the contrast which is equivalent by pro-

viding some a priori information. Our strategy is to combine one and another by minimization of the total

variation of the contrast, during the whole inversion process. The standard way is to include such a norm in

the cost functional by introducing an extra penalty function. Although the addition of this extra regularizer
to the cost functional has a very positive effect on the quality of the reconstruction for both �blocky� and
smooth profiles, a drawback is the presence of a weighting parameter in the cost functional, which can only

be determined through considerable numerical experimentation, especially for our present case which is a

problem that requires extensive computational forces.

Although there are many practical ways of determining the optimal regularization parameter in the

framework of Tikhonov regularization (see e.g. [35]), one of the most simple techniques is the so-called

adaptive regularization with progressively decreasing regularization parameter. This has led to the idea of

including the total variation as a multiplicative constraint [8,31], with the result that the original cost
functional is the weighting parameter of the regularizer, so that this parameter is determined by the in-

version procedure itself. It appears to be very effective, without major a priori information about the shape

and the constitution of the object configuration. This makes the algorithm suitable to invert experimental

data �blindly� as shown in by Bloemenkamp et al. [12]. Later on, the CSI method based on a new weighted

L2-norm regularizer [30,31] is used in stead of the standard total variation applied to handle complicated
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biological objects embedded in a lossy medium for both the two- and three-dimensional cases [9]. This

weighted L2-norm regularizer provides significant improvement compared to its predecessor, the L1-norm

Total Variation, since it allows us to find all the updating parameters for the contrast in closed-form.
Further, although one may argue that by including the regularizer as a multiplicative factor, the nonlin-

earity of the problem is increased, a careful analysis shows that, under certain restrictions, no new local

minima are introduced using this multiplicative technique with the weighted L2-norm as regularization

factor. Hence, in the work reported in this paper we will employ the CSI method using the weighted L2-

norm regularizer as our inversion scheme. This method is denoted as Multiplicative Regularized CSI

method (MR-CSI). Numerical examples using simulated data are presented to demonstrate the capabilities

of the MR-CSI method.
2. Integral representations

We assume the scatterer with support Dsct, to be located in a homogeneous background medium with

permittivity eb, conductivity rb and permeability lb. We define a computational domain D, such that
Dsct 2 D. A Cartesian coordinate system is centered in D with spatial points denoted by x ¼ ðx1; x2; x3Þ. The
excitation source can be either a magnetic or electric dipole depending on the application at hand. The

sources and receivers are assumed to be located in S, outside D.
The fields are assumed to be vary sinusoidally with time t with frequency x, with time factor expð�ixtÞ

where i2 ¼ �1. The corresponding wavelength is denoted by k. If the vector Einc and H inc denote the

incident fields excited by either electric or magnetic sources, then the total fields in D are given by

EðxÞ ¼ E incðxÞ þ EsctðxÞ and HðxÞ ¼ H incðxÞ þH sctðxÞ; ð1Þ

where Esct and H sct denote the scattered fields. In (1), the symbol E stands for the electric field and the
symbol H stands for the magnetic field. It is well known that the total field in D satisfies the following

domain integral equations [17]:

EincðxÞ ¼ EðxÞ � ½k2b þ $$��
Z
D
gðx� x0ÞvEðx0ÞEðx0Þ dvðx0Þ

� ixlb$�
Z
D
gðx� x0ÞvHðx0ÞHðx0Þ dvðx0Þ; ð2Þ
H incðxÞ ¼ HðxÞ � r0
b$�

Z
D
gðx� x0ÞvEðx0ÞEðx0Þ dvðx0Þ

� ½k2b þ $$��
Z
D
gðx� x0ÞvHðx0ÞHðx0Þ dvðx0Þ; ð3Þ

where the electric contrast vE and the magnetic contrast vH are given by

vEðxÞ ¼ r0ðxÞ
r0
b

� 1 and vHðxÞ ¼ lðxÞ
lb

� 1; ð4Þ

in which

r0ðxÞ ¼ rðxÞ � ixeðxÞ and r0
b ¼ rb � ixeb: ð5Þ

In (4) and (5), eðxÞ is the permittivity, rðxÞ is the conductivity and lðxÞ is the permeability of the contrasting

domain D. Note that if we consider a low-frequency electromagnetic measurement (in the so-called diffusive
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range), the terms containing the permittivities in (5) can be neglected. Then r0 ¼ r is real and positive. In (2)

and (3), the symbol $ ¼ ðo1; o2; o3Þ denotes the spatial differentiation with respect to the position vector

x ¼ ðx1; x2; x3Þ and the homogeneous scalar Green function g is given by

gðxÞ ¼ expðikbjxjÞ
4pjxj ; with kb ¼ ðixlbr

0
bÞ

1
2; ReðkbÞ > 0: ð6Þ

We observe that in the integrand of (2) and (3) the fields and the contrasts occur as products terms. Hence,

for our forward and inverse models we propose to take these so-called contrast sources as the fundamental

unknowns, defined by

WEðxÞ ¼ vEðxÞEðxÞ and WHðxÞ ¼ vHðxÞHðxÞ: ð7Þ

Multiplying (2) with the electric contrast vE and (3) with the magnetic contrast vH and using (7), we obtain

vEðxÞEincðxÞ ¼ WEðxÞ � vEðxÞ½k2b þ $$��
Z
D
gðx� x0ÞWEðx0Þ dvðx0Þ

� vEðxÞixlb$�
Z
D
gðx� x0ÞWHðx0Þ dvðx0Þ; ð8Þ
vHðxÞH incðxÞ ¼ WHðxÞ � vHðxÞr0
b$�

Z
D
gðx� x0ÞWEðx0Þ dvðx0Þ

� vHðxÞ½k2b þ $$��
Z
D
gðx� x0ÞWHðx0Þ dvðx0Þ: ð9Þ

The advantage of the use of these domain integral equations is the fact that the contrast functions vE and vH

occur outside the integral operators and that these integral operators are convolutions in space. Further-

more, we observe that for given contrast sourcesWE andWH, the electric contrast vE follows from (8) only,

while the magnetic contrast vH follows from (9) only. This observation leads to significant simplifications in

the development of our algorithm for the inverse scattering problem.

We further note that the values of the electric and magnetic fields (hence also the electric and magnetic
contrast sources) can significantly differ in order. To avoid any numerical difficulty, we propose to work

with renormalized integral equations as follows:

vEðxÞEincðxÞ ¼ wEðxÞ � vEðxÞ½k2b þ $$��
Z
D
gðx� x0ÞwEðx0Þ dvðx0Þ

� vEðxÞ ixlb

Zb

$�
Z
D
gðx� x0ÞwHðx0Þ dvðx0Þ; ð10Þ
vHðxÞZbH
incðxÞ ¼ wHðxÞ � vHðxÞZbr

0
b$�

Z
D
gðx� x0ÞwEðx0Þ dvðx0Þ

� vHðxÞ½k2b þ $$��
Z
D
gðx� x0ÞwHðx0Þ dvðx0Þ; ð11Þ

where Zb is the characteristic impedance of the background medium,

Zb ¼
�ixlb

r0

� �1
2

¼ �k2b
r02

� �1
2

; ð12Þ

b b
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and where the normalized contrast sources are introduced as

wEðxÞ ¼ WEðxÞ and wHðxÞ ¼ ZbW
HðxÞ: ð13Þ

Once the electric and magnetic contrast sources vectors in D are known, the scattered fields at the obser-

vation domain S can be computed through:

EsctðxÞ ¼
Z
D
ðk2b þ $0$0�Þgðx� x0ÞwEðx0Þ dvðx0Þ þ

Z
D

�ixlb

Zb

$0gðx� x0Þ � wHðx0Þ dvðx0Þ; ð14Þ
H sctðxÞ ¼ �
Z
D
r0
b$

0gðx� x0Þ � wEðx0Þ dvðx0Þ þ
Z
D

1

Zb

ðk2b þ $0$0�Þgðx� x0ÞwHðx0Þ dvðx0Þ; ð15Þ

where $0 ¼ ðo01; o02; o03Þ denotes spatial differentiation with respect to x0 ¼ ðx1; x2; x3Þ.
From a physical point of view, the integral representations (14) and (15) show that the scattered field is

generated by excess electric and magnetic currents flowing in a homogeneous embedding within the con-

trasting object, while (10) and (11) are the equations from which these excess electric and magnetic currents

can be solved. The latter equations are singular integral equations, in which grad-div and curl operators act

on normalized vector potentials, defined as the spatial convolutions of the Green function and the contrast
sources. Numerical implementation of such integral equations must be carried out carefully.
3. Forward scattering problem

We discretize the object domain D using a mesh uniformly subdivided in the x1, x2, and x3 direction with

spacing Dx1, Dx2, and Dx3, respectively. In each rectangular subdomain, we assume the contrast sources and

the contrasts to be constant. The integral operators are discretized by first applying the weakening pro-
cedure in order to cope with the singularity nature of the integral equations. After that all spatial differ-

entiations are calculated using the finite difference rule. This discretization technique has been proven

accurate and efficient for different type of integral equations (see [2] for the static case and see [6,37,38] for

the diffusive and wavefield cases). In Appendix A, we present the discretized version of the domain integral

equations for the electric and magnetic contrast sources.

After discretization, we obtain a linear system of equations for wE
j;m;n;p and wH

j;m;n;p when both vEm;n;p and
vHm;n;p are known. Here the subscript j denotes the components of a vector and while m, n and p denote the

discrete values at the different points of observation in the object domain D. This linear system of equations
can be written compactly in operator notations as

vEEinc ¼ LEE
D wE þLEH

D wH; ð16Þ
vHZbH
inc ¼ LHE

D wE þLHH
D wH; ð17Þ

where the operators are defined as

ðLEE
D wE þLEH

D wHÞj;m;n;p ¼ wE
j;m;n;p � vEm;n;pðk2bAE

j;m;n;p þ BE
j;m;n;pÞ; ð18Þ
ðLHE
D wE þLHH

D wHÞj;m;n;p ¼ wH
j;m;n;p � vHm;n;pðk2bAH

j;m;n;p þ BH
j;m;n;pÞ ð19Þ

for j ¼ 1; 2; 3, m ¼ 1; . . . ;M , n ¼ 1; . . . ;N , p ¼ 1; . . . ; P and where BE
j;m;n;p, B

H
j;m;n;p, A

E
j;m;n;p and AH

j;m;n;p are

given in (A.10)–(A.12).
Since all the expressions of BE

j;m;n;p, B
H
j;m;n;p, A

E
j;m;n;p and AH

j;m;n;p consist of spatial convolutions in space, we

can advantageously use Fast Fourier Transform (FFT) routines to compute them. However, we then need
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an iterative solution, and the Conjugate Gradient (CG) method seems to be one of the most efficient

methods. With this so-called CG-FFT technique we are able to solve complex three-dimensional problems

efficiently. Furthermore, it also gives the fundament of our solution for the inverse modeling.

3.1. Algorithm

This combination of the CG type method and the FFT algorithm has been used extensively for the

integral equation either for the electric contrast only or magnetic contrast only, see [2,6,20,21,36–38]. Al-

though there are a number of algorithms which can take into account an object with the electric and

magnetic contrasts simultaneously, they are all (to our knowledge) based on local equations (finite dif-

ference types) and handle two-dimensional cases only, see [25,28]. In the present work we have to deal with
both electric and magnetic contrast source vectors and we consider the full three-dimensional case. This

complicates significantly the problem. Using matrix notations the domain integral equations in (16)–(19)

can be written as

vEEinc

vHZbH
inc

" #
¼

LEE
D LEH

D

LHE
D LHH

D

" #
wE

wH

� �
: ð20Þ

We observe that the matrix describing this linear system of equations is non-symmetric. Therefore, we also

need the adjoint operator in order to set up a CG scheme. In such a scheme we also need the definition of

the norm and the inner product. In view of the definition of the discretized field quantities, the square norm

(the inner product) on domain D of two vector function on D is given by

hu; viD ¼ Dx1Dx2Dx3
XM
m¼1

XN
n¼1

XP
p¼1

um;n;p � vm;n;p; ð21Þ

where the overbar denotes the complex conjugate and the dot ð�Þ denotes the dot product of two vector

functions. The adjoint operators are defined via

rE

rH

" #
;

LEE
D LEH

D

LHE
D LHH

D

" #
wE

wH

" #* +
D

¼
LEE� LHE�

LEH� LHH�

" #
rE

rH

" #
;

wE

wH

" #* +
D

: ð22Þ

The discretized form of this adjoint operators LEE�, LEH�, LHE� and LHH� are given in Appendix B.

With these definitions we now formulate the CG scheme that minimizes iteratively the error norm

FDðwE;wHÞ ¼ gED vEEinc
�� �LEE

D wE �LEH
D wH

��2
D
þ gHD vHZbH

inc
�� �LHE

D wE �LHH
D wH

��2
D
; ð23Þ

where the normalization factors are given by

gED ¼ vEE inc
�� ���2

D
and gHD ¼ vHZbH

inc
�� ���2

D
: ð24Þ

We start the CG scheme with zero initial estimates ½wE
0 wH

0 � ¼ ½0 0�. Then it computes

vE1

vH1

" #
¼

gE1

gH1

" #
¼

gEDL
EE�
D gHDL

HE�
D

gEDL
EH�
D gHDL

HH�
D

" #
vEEinc

vHZbH
inc

" #
; ð25Þ
wE
1

wH
1

" #
¼ kgE1 k

2
D þ kgH1 k

2
D

kLEE
D gE

1 þLEH
D gH1 k

2

D þ kLHE
D gE

1 þLHH
D gH1 k

2

D

gE1

gH1

" #
; ð26Þ
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with resulting residual errors

rE1

rH1

" #
¼ vEE inc

vHZbH
inc

� �
�

LEE
D LEH

D

LHE
D LHH

D

" #
wE

1

wH
1

" #
; ð27Þ

and computes successively for n ¼ 2; 3; . . . ;

gEn

gHn

" #
¼

gEDL
EE�
D gHDL

HE�
D

gEDL
EH�
D gHDL

HH�
D

" #
rEn�1

rHn�1

" #
; ð28Þ
vEn

vHn

" #
¼

gEn

gHn

" #
þ cn

vEn�1

vHn�1

" #
; cn ¼

kgE
n k

2

D þ kgHn k
2

D

kgEn�1k
2
D þ kgH

n�1k
2
D

; ð29Þ
wE
n

wH
n

" #
¼

wE
n�1

wH
n�1

" #
þ hgEn ; vEn iD þ hgH

n ; v
H
n iD

kLEE
D vEn þLEH

D vHn k
2
D þ kLHE

D vEn þLHH
D vHn k

2
D

vEn

vHn

" #
; ð30Þ

with resulting residual errors

rEn

rHn

" #
¼

vEEinc

vHZbH
inc

" #
�

LEE
D LEH

D

LHE
D LHH

D

" #
wE

n

wH
n

" #
: ð31Þ

In fact, this CG scheme solves iteratively the symmetrized system of linear equations:

gEDL
EE�LEE

D gHDL
HE�LEH

D

gEDL
EH�LHE

D gHDL
HH�LHH

D

" #
wE

n

wH
n

" #
¼

gEDL
EE�
D vEE inc þ gHDL

HE�
D vHZbH

inc

gEDL
EH�
D vEE inc þ gHDL

HH�
D vHZbH

inc

" #
: ð32Þ
3.2. Numerical example

Before we proceed with the inverse scattering problem, we first show the advantage of using the domain

integral equation formulated in terms of wE and wH as given in (10) and (11) above the other two alter-

natives, namely the one formulated in terms of E and H given in (2) and (3) and in terms of WE and WH

given in (8) and (9), for two representative numerical examples. We consider the three-dimensional model as

shown in Fig. 1. In the object domain D we have two disjointed object O1 and O2. The object O1 with

dimension of k by k by k is an object with electric contrast only, vE ¼ 0:8þ i0:4, while the object O2 with

dimension of k by k by k is an object with magnetic contrast only, vH ¼ 0:8. These two objects are located in

the object (computational) domain D with dimension of 3k by 3k by 3k. The background is vacuum. The
computational domain D is subdivided into 30 by 30 by 30 rectangular subdomains. Hence the discreti-

zation is 10 points per wavelength which is more than enough to obtain a reliable solution when one uses

the integral equation approach [12].

As the excitation source model, we employ a unit point magnetic dipole directed in the positive vertical

x3 direction located at xS ¼ ð0;�1:6k; 0Þ just outside the object domain D. Hence, the incident fields in the

domain D are given by
EincðxÞ ¼ �ixl o gðx
�

� xSÞi � o gðx� xSÞi
�
; ð33Þ
b 2 1 1 2



Fig. 1. The rectangular objects O1 and O2 in the computational domain D.
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H incðxÞ ¼ � o3o1gðx
�

� xSÞi1 þ o3o2gðx� xSÞi2 þ k2b
�

þ o23
	
gðx� xSÞi3

�
: ð34Þ

In Fig. 2 we present a convergence rate picture (the square root of the cost functional of (23) plotted against

the number of iterations) of the CG methods using the field formulations E and H (see dashed-dotted line),

using the contrast sources formulations WE and WH (see dashed line) and using the normalized contrast

sources formulations wE and wH (see solid line). From the results, it is obvious that we will proceed with the

normalized contrast source formulations. If we investigate the convergence rate picture in more details, we

observe that for every 6–8 iterations the CG method using the E and H formulation and the WE and WH

formulation do not yield a substantial improvement. This is caused by the fact that for the present full wave
Fig. 2. The square root of the normalized error FD with respect to the configuration given in Fig. 1 using ðE;HÞ-formulation (dashed-

dot line), ðWE;WHÞ-formulation (dashed line) and ðwE;wHÞ-formulation (solid line).



Fig. 3. The square root of the normalized error FD with respect to the configuration given in Fig. 1 using ðwE;wHÞ-formulation for

increasing contrast values.
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problem the values of the electric type fields and the magnetic type fields can significantly differ. Hence,

normalization using the characteristic impedance Zb is a prerequisite to obtain the solution within a rea-

sonable number of iterations. This normalization should be of importance in the inverse problem as well.

Next in order to investigate the behavior of our forward scheme with respect to the increasing contrast
values, we present in Fig. 3 the convergence rate of the scheme using ðwE;wHÞ-formulation versus the

number of iteration for increasing contrast values, ðvE; vHÞ, ð2vE; 2vHÞ, ð3vE; 3vHÞ and ð4vE; 4vHÞ. As we

expected the convergence rate is decrease with increasing values of the electric and magnetic contrasts.

In our next example, we consider an object which has both electric and magnetic contrasts shown in

Fig. 4. The rectangular object O1 with dimension of k by k by k is contained in another rectangular object
Fig. 4. A k by k by k rectangular object O1 inside a 2k by 2k by 2k rectangular object O2 in the computational domain D.



Fig. 5. The square root of the normalized error FD with respect to the configuration given in Fig. 4 using ðE;HÞ-formulation (dashed-

dot line), ðWE;WHÞ-formulation (dashed line) and ðwE;wHÞ-formulation (solid line).
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with dimension of 2k by 2k by 2k. The contrasts of O1 are vE ¼ 0:6þ i0:2 and vH ¼ 0:4, while the contrasts
of O2 are vE ¼ 0:3þ i0:4 and vH ¼ 0:2. The background is vacuum (rb ¼ 0, eb ¼ e0 and lb ¼ l0). The same

discretization points are used as in the previous example.
In Fig. 5 we present the convergence rate picture (the square root of the cost functional of (23) plotted

against the number of iterations) of the CG method using field formulations E and H (see dashed-dotted

line), using contrast sources formulations WE and WH (see dashed line) and using normalized contrast

sources formulations wE and wH (see solid line). Again, we observe the necessity of using the integral

equation formulated in terms of wE and wH given in (8) and (9). Advocated by these two representative

numerical examples, for our inverse problems, we proceed by using the domain integral equation formu-

lated in terms of wE and wH.
4. Inverse scattering problem

We now assume that the inhomogeneous domain D is irradiated successively by a number (j ¼ 1; 2; . . .)
of incident fields. For each excitation, the forward scattering problem may be reformulated as the domain

integral equation, see (20) where the operators LEE;EH;HE;HH
D depend on the electric and magnetic contrasts

which are also unknown. To show these unknowns explicitly we rewrite (20) as

vEEinc
j

vHZbH
inc
j

" #
¼

wE
j

wH
j

" #
�

vE 0

0 vH

" #
KEE

D KEH
D

KHE
D KHH

D

" #
wE

j

wH
j

" #
on D; ð35Þ

where

ðKEE
D wE

j þKEH
D wH

j Þj;m;n;p;j ¼ ðk2bAE
j;m;n;p;j þ BE

j;m;n;p;jÞ; ð36Þ
ðKHE
D wE

j þKHH
D wH

j Þj;m;n;p;j ¼ ðk2bAH
j;m;n;p;j þ BH

j;m;n;p;jÞ ð37Þ
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for j ¼ 1; 2; 3, m ¼ 1; . . . ;M , n ¼ 1; . . . ;N , p ¼ 1; . . . ; P , and in which BE
j;m;n;p;j, B

H
j;m;n;p;j, A

E
j;m;n;p;j and AH

j;m;n;p;j

follow from (A.10)–(A.12) by adding the subscript j to denote the excitation dependency. Eq. (35) is re-

ferred as the object equation that holds in the object domain D.
Further, in the inverse problem, we measure all the components of the scattered electric field vector Esct

j

and the scattered magnetic field vector H sct
j at the measurement points xR. We assume that all measurement

points are located in the data domain S, outside the object domain D. These measurement fields can also be

written in the operator-matrix notation as follows:

Esct
j

ZbH
sct
j

� �
¼

KEE
S KEH

S

KHE
S KHH

S

" #
wE

j

wH
j

" #
on S; ð38Þ

where

KEE
S wE

j

h
þKEH

S wH
j

i
j
ðxRÞ ¼ k2bA

E
j;jðxRÞ þ BE

j;jðxRÞ; ð39Þ
KHE
S wE

j

h
þKHH

S wH
j

i
j
ðxRÞ ¼ k2bA

H
j;jðxRÞ þ BH

j;jðxRÞ ð40Þ

for xR 2 S and in which BE
j;jðxRÞ, BH

j;jðxRÞ, AE
j;jðxRÞ and AE

j;jðxRÞ follow from (C.3)–(C.5) by adding the

subscript j to denote the excitation dependency. Eq. (38) is referred as the data equation that holds in the

data domain S.
The inverse scattering problems can be formulated as follows: solving the data equation in (38) to de-

termine the electric contrast vE and magnetic contrast vH on the object domain D from the knowledge of the
incident fields Einc

j and H inc
j on the object domain D and the scattered fields Esct

j and H sct
j on the data

domain S subject to additional and necessary conditions that the contrast sources wE
j and wH

j and the

contrasts vE and vH satisfy the object equation in (35). This is a nonlinear problem and in practice it can

only be solved iteratively due to a large number of unknowns especially for the case discuss in this paper.

The inverse problem at hand will be solved with the Contrast Source Inversion (CSI) method using mul-

tiplicative regularization factor.

4.1. Contrast Source Inversion method

The CSI method, developed by van den Berg and Kleinman [29] for the case of two-dimensional elec-

tromagnetic TM polarization, was extended to the full three-dimensional case for geophysical and medical

applications by Abubakar and co-authors [2–5,7]. All the above-mentioned publications focus on the

problem with electric contrast only. Here, we extend it to the case of handling both electric and magnetic

contrast. We start with the non-regularized CSI method. In this method, the sequences of wE
j;n, w

H
j;n, v

E
n and

vHn , for n ¼ 1; 2; . . . ; are iteratively found by minimizing a cost functional. The cost functional is defined as

the superposition of the normalized data and object errors

FnðwE
j ;w

H
j ; v

E; vHÞ ¼ F E
S ðwE

j ;w
H
j Þ þ F E

D;nðwE
j ;w

H
j ; v

EÞ þ F H
S ðwE

j ;w
H
j Þ þ F H

D;nðwE
j ;w

H
j ; v

HÞ; ð41Þ

where the normalized data errors F E
S and F H

S are given by

F E
S ðwE

j ;w
H
j Þ ¼ gES

X
j

kEsct
j �KEE

S wE
j �KEH

S wH
j k

2

S ; ð42Þ
F H
S ðwE

j ;w
H
j Þ ¼ gHS

X
kZbH

sct
j �KHE

S wE
j �KHH

S wH
j k

2

S ; ð43Þ

j
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and the normalized object errors F E
D;n and F H

D;n by

F E
D;nðwE

j ;w
H
j ; v

EÞ ¼ gED;n
X
j

kvEE inc
j � wE

j þ vEKEE
D wE

j þ vEKEH
D wH

j k
2
D; ð44Þ
F H
D;nðwE

j ;w
H
j ; v

HÞ ¼ gHD;n
X
j

kvHZbH
inc
j � wH

j þ vHKHE
D wE

j þ vHKHH
D wH

j k
2
D; ð45Þ

in which the various normalization factors are chosen to be

gES ¼
X
j

kEsct
j k2S and gED;n ¼

X
j

kvEn�1E
inc
j k2D; ð46Þ
gHS ¼
X
j

kZbH
sct
j k2S and gHD;n ¼

X
j

kvHn�1ZbH
inc
j k2D: ð47Þ

Here the norm k � k2D denotes the squared norm on object domain D defined in (21), and while the norm
k � k2S on the data domain S is defined as

kuk2S ¼
X
8x2S

uðxÞ � uðxÞ: ð48Þ

The normalization factors in (46) and (47) are chosen in such a way that all the terms in (41) are equal to
unity if the contrast sources wE

j and wH
j vanish. Although this updating of the contrast sources and contrasts

can be carried out simultaneously, an alternating updating scheme simplifies the algorithm significantly. In

addition it is noted that, for given contrasts vE and vH, the second and the fourth terms in (41) make the

problem to determine the contrast sources well-posed. Hence, these terms F E
D and F H

D can also be seen as

physical regularizer (Maxwell�s regularizers) terms for the data errors F E
S and F H

S and the choice to update

the unknown contrast sources and contrasts alternatingly seems to be a natural choice.

4.1.1. Updating the contrast sources

For given wE
j;n�1, w

H
j;n�1, v

E
n�1 and vHn�1, in each iteration, we update the contrast sources using a single CG

step as

wE
j;n

wH
j;n

" #
¼

wE
j;n�1

wH
j;n�1

" #
þ an

vEj;n

vHj;n

" #
; ð49Þ

where an is a real parameter independent of position, while vEj;n and vHj;n are the Polak–Ribi�ere conjugate
gradient directions given by

vEj;0

vHj;0

" #
¼ 0

0

� �
;

vEj;n

vHj;n

" #
¼

gEj;n

gHj;n

" #
þ cn

vEj;n�1

vHj;n�1

" #
; ð50Þ

in which

cn ¼
P

j RehgEj;n; gEj;n � gEj;n�1iD þ
P

j RehgHj;n; gHj;n � gHj;n�1iDP
j kgEj;n�1k

2

D þ
P

j kgHj;n�1k
2

D

: ð51Þ

In (50) and (51), the gradients gEj;n and gHj;n of the cost functional Fn in (41) with respect to wE
j and wH

j

evaluated at wE
j;n�1, w

H
j;n�1, v

H
n�1 and vEn�1 are given by
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gEj;n

gHj;n

" #
¼

gESK
EE�
S gHS K

HE�
S

gESK
EH�
S gHS K

HH�
S

" #
qE
j;n�1

qH
j;n�1

" #
þ

gED;nðI�KEE�
D Þ gHD;nK

HE�
D

gED;nK
EH�
D gHD;nðI�KHH�

D Þ

" #
rEj;n�1

rHj;n�1

" #
; ð52Þ

where KEE�
S , KEH�

S , KHE�
S , KHH�

S , KEE�
D , KEH�

D , KHE�
D and KHH�

D are the adjoint operators of KEE
S , KEH

S ,

KHE
S , KHH

S , KEE
D , KEH

D , KHE
D and KHH

D , respectively. The discretized versions of these adjoint operators

can be found in Appendices B and C. Further, the residuals in the data and object domain are defined as

qE
j;n ¼ Esct

j �KEE
S wE

j;n �KEH
S wH

j;n; ð53Þ
qH
j;n ¼ ZbH

sct
j �KHE

S wE
j;n �KHH

S wH
j;n ð54Þ

and

rEj;n ¼ vEn�1E
inc
j � wE

j;n þ vEn�1K
EE
D wE

j;n þ vEn�1K
EH
D wH

j;n; ð55Þ
rHj;n ¼ vHn�1ZbH
inc
j � wH

j;n þ vHn�1K
HE
D wE

j;n þ vHn�1K
HH
D wH

j;n; ð56Þ

respectively. The real parameter an is found as the minimizer of

an ¼ arg min
real a

FnðwE
j;n�1

n
þ avEj;n;w

H
j;n�1 þ avHj;n; v

E
n�1; v

H
n�1Þ

o
: ð57Þ

Note that the cost functional Fn is a quadratic function of real a, hence only one minimizer is arrived at.

Substituting (49) in (57) and then minimizing (41), we obtain an explicit expression for the minimizer.

4.1.2. Updating the contrasts

Before we proceed with updating the contrasts vE and vH, we observe that the unknown electric contrast

only occurs in the normalized object error F E
D;n, while the unknown magnetic contrast only occurs in the

normalized object error F H
D;n. Hence, for given contrast sources wE

j and wH
j , the minimization problem is

uncoupled. In order to find these contrasts, we need only to minimize the normalized object errors defined

in (44) and (45) separately. We rewrite these two cost functional as

F E
D;nðwE

j;n;w
H
j;n; v

EÞ ¼ gED;n
X
j

kvEf Ej;n � wE
j;nk

2

D; ð58Þ
F H
D;nðwE

j;n;w
H
j;n; v

HÞ ¼ gHD;n
X
j

kvHf Hj;n � wH
j;nk

2

D; ð59Þ

where, for given contrast sources wE
j;n and wH

j;n,

f Ej;n ¼ E inc
j þKEE

D wE
j;n þKEH

D wH
j;n; ð60Þ
f Hj;n ¼ ZbH
inc
j þKHE

D wE
j;n þKHH

D wH
j;n: ð61Þ

The minimizers vEn and vHn that minimize (58) and (59), respectively, are found explicitly as

vEn ¼
P

j w
E
j;n � f

E
j;nP

j jf
E
j;nj

2
and vHn ¼

P
j w

H
j;n � f

H
j;nP

j jf
H
j;nj

2
: ð62Þ
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In view of this analytical minimization, it is anticipated that here the ill-posedness of the inverse problem

has been avoided, while in other inversion methods (see e.g. [10,13,18,19]) where an integral operator acts

on the contrast a numerical inversion of the ill-posed integral operator may lead to numerical instabilities.
4.1.3. Multiplicative regularization

When the number of data is limited and a significant noise level is present in the data we use the concept

of multiplicative regularization [31], where the strength of regularization is determined by the error norms

pertaining to the data equations and the object equations. In each iteration, the regularization factor is the

norm of the relative spatial variation of the contrast. Although it is an L2-norm it restores the band lim-

itation of the images we have obtained with the Contrast Source Inversion method, see also [30]. In this

paper we apply the multiplicative regularization technique by extending the theory developed by Abubakar
et al. [9] to the more complicated case with two types of material contrasts. Since in the cost functional of

(41) the unknown vE is only present in F E
D;n and while the unknown vH only in F H

D;n, we multiply the nor-

malized errors corresponding to the electric type integral with the regularization factor for vE only and to

the magnetic type integral with the regularization factor for vH only. Then, in the inversion process we aim

to minimize the norms

FE
n ðwE

j ;w
H
j ; v

EÞ ¼ F E
S ðwE

j ;w
H
j Þ

h
þ F E

D;nðwE
j ;w

H
j ; v

EÞ
i
F R
n ð$vEÞ; ð63Þ
FH
n ðwE

j ;w
H
j ; v

HÞ ¼ F H
S ðwE

j ;w
H
j Þ

h
þ F H

D;nðwE
j ;w

H
j ; v

HÞ
i
F R
n ð$vHÞ; ð64Þ

separately, where $vE and $vH denote the gradient of the electric and magnetic contrasts, respectively. The

non-zero regularization factors F R
n in (63) and (64) are weighted L2-norm factors, viz.,

F R
n ð$vEÞ ¼

1

V

Z
D

j$vEðxÞj2 þ ðdEn Þ
2

j$vEn�1ðxÞj
2 þ ðdEn Þ

2
dvðxÞ ¼ kbEn$vEk

2

D þ ðdEn Þ
2kbEn k

2

D; ð65Þ

where

bEn ¼ 1

V 1=2 $vEn�1ðxÞ


 

2 þ ðdEn Þ

2
h i1=2 ; with V ¼

Z
D
dvðxÞ; ð66Þ

and F R
n ð$vHÞ follows from (65) and (66) by replacing vE, dEn and bEn with vH, dHn and bHn . From this point on

we will discuss only the updating procedure for vE, while the updating procedure for vH follows from re-

placing the superscript E in the updating formulas for vE by the superscript H.

Whether the multiplicative functional of the form of (65) provides a regularized solution of the inverse

problem in the general case is still an open problem, but we now discuss some measures to obtain regu-
larized solutions with our CSI algorithm. The steering parameter ðdEn Þ

2
controls the influence of the reg-

ularization. However, the choice of these steering parameter is significant less sensitive to the solution than

the choice of the parameter in the framework of an additive Tikhonov regularization. Similar to the so-

called adaptive regularization with progressively decreasing parameter in the framework of Tikhonov

regularization (see e.g. [35]) we take a progressively decreasing steering parameter. Since the normalized

object error term will decrease as a function of the number of iterations, despite of the amount of the noise

present in the data, it is natural to take the steering parameters as

ðdEn Þ
2 ¼

F E
D;nðwE

j;n;w
H
j;n; v

E
n�1Þ

½maxðDx ;Dx ;D Þ�2
: ð67Þ
1 2 3
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The structure of our multiplicative regularization procedure is such that it will minimize the regularization

factor with large weighting parameter in the beginning of the optimization process, because the value of

F E
S þ F E

D;n is still large, and that it will gradually minimize more and more the error in the data and object
equations when the regularization factor F R

n remains nearly constant value. If noise is present in the data,

the normalized data error will remain at large values during the optimization and, therefore, the weight of

the regularization factor will be more significant. Hence, the noise will, at all times, be suppressed in the

reconstruction process and we automatically fulfill the need of larger regularization when the data contains

noise.

Since the regularization factor have the properties F R
n ð$vEn�1Þ ¼ 1, there is no change in the updating

procedure for wE
j and wH

j . At the beginning of each iteration, we have to replace the quantity vEn�1 and by

vR;E
n�1, but the remainder of the contrast sources updating procedure are not changed. Then only the updating

of the contrasts has to be modified. In fact the contrast sources are determined from a cost functional that

in nature is not changed by the regularization.

Instead of taking the previous iterate of the contrast values as done in the standard CG method, we now

take the analytical values of (62) as starting values. From this point, we make an additional minimization

step,

vR;E
n ¼ vEn þ bE

n d
E
n ; dE

n ¼ gEn þRehgEn ; gEn � gEn�1iD
kgEn�1k

2

D

dE
n�1; ð68Þ

where vEn is given in (62), bE
n is a real parameter, and gEn is the gradient of the cost functionalFE

n in (63) with
respect to vE evaluated at wE

j;n and vEn given by

gEn ¼ F E
S ðwE

j;n;w
H
j;nÞ

h
þ F E

D;nðwE
j;n;w

H
j;n; v

E
n Þ
i
$ � ðbEn Þ

2$vEðxÞ
h i

: ð69Þ

Note that there is no contribution from the gradient of F E
D;n because around this point the corresponding

gradient has vanished. Hence, we can conclude that the inclusion of this regularization factor is only an

extra step which will not disturb the physical solution.

The real parameter bE
n is found by minimizing the cost functional in (63) as

bE
n ¼ arg min

real b
FE

S ðwE
j;n;w

H
j;nÞ

h
þ FE

D;nðwE
j;n;w

H
j;n; v

E
n þ bdE

n Þ
i
FR

n ðvEn þ bdE
n Þ: ð70Þ

This minimization can be performed analytically since the cost functionalFE
n is a fourth-degree polynomial

in bE, see [31].

A disadvantage of the multiplicative regularization with respect to the additive regularization is that we

have to guarantee that the cost functional FE
n in (63) is a convex function of real bE. A sufficient condition

is, see [31],

ðdEn Þ
2 P

kbEn$vEn k
2

D

2kbEn k
2

D

: ð71Þ

If the choice for the parameter ðdEn Þ
2
of (67) is less than the right-hand side of (71), we replace the value of

ðdEn Þ
2
by the right-hand side of (71).

In comparison to our algorithm discussed in [31] we use now an improved preconditioner. Note that for

given contrast sources wE
j , the normal equation associated with the cost functional in (63) with respect to vE

is given by

F R
n ðvEÞgED;n

X
j

jf Ej;nj
2 þ ½F E

S ðwE
j;n;w

H
j;nÞ þ F E

D;nðwE
j;n;w

H
j;n; v

EÞ�$ � ðbEn$vEÞ ¼ gED;n
X
j

wE
j;n � f

E
j;n: ð72Þ
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It is clear that (72) is a nonlinear equation in terms of the electric contrast vE. We observe that the first term

in (72) represents a diagonal matrix and its second term represents a very sparse matrix (for the case of one-

dimensional in space it is a matrix with only three non-zero elements on its diagonal). Then, if the problem
is linear, we expect that Jacobi preconditioning operator will be effective to accelerate the converge of CG

type methods. The only difficulty in the present algorithm is the nonlinearity. Hence, by linearizing this

normal equation (put vE ¼ vEn in F E
D;n and F R

n ) and taking diagonal term we can arrive at a very simple

preconditioning operator for the updating procedure for the electric contrast vE,

PE
nP

E�
n ¼ diag�1 gED;n

X
j

jf E
j;nj

2

"
þ ½F E

S ðwE
j;n;w

H
j;nÞ þ F E

D;nðwE
j;n;w

H
j;n; v

E
n Þ�$ � bEn$

#
: ð73Þ

This preconditioning operator in (73) is used in the optimization process by multiplying the gradients in

(69) by PE
nP

E�
n .

Finally, we note that the updating procedure for the magnetic contrast vH can be found in a similar way.

After we have obtained new estimates for the contrast vR;E
n and vR;H

n , we calculate the value of the cost

functional in (41) for wE
j ¼ wE

j;n, w
H
j ¼ wH

j;n, v
E ¼ vR;E

n and vH ¼ vR;H
n , and check whether it is already small

enough or already reaches a minimum. If it is not, we repeat again the iterative process by updating the

contrast sources starting with vEn�1 ¼ vR;E
n�1 and vHn�1 ¼ vR;H

n�1 of the previous iteration.

4.2. Numerical examples

In this section we present a few reconstruction results using simulated data in order to illustrate the

behavior of our numerical algorithm.

4.2.1. Inversion of two disjointed electric and magnetic scatterers

As the first example, we consider the case when we have two objects, one is purely electric object with

contrast vE ¼ 0:8þ i0:4 while the other one is a purely magnetic object with contrast vH ¼ 0:8, as shown in

Fig. 1. The sizes of these objects are k by k by k. These unknown objects are illuminated using 63 sources

located on a plane with a dimension of 3k by 3k with the center located at ð�1:6k; 0; 0Þ. These 63 vertical

magnetic dipole sources are distributed uniformly on this source plane. Further we measure all components

of the electric and magnetic scattered fields on a transmitter plane with the same size as the source plane,

but its center is located at ð1:6k; 0; 0Þ. Hence we have 23,814 data points. After generation of synthetic data
we added ns ¼ 10% pseudo-random white noise to the data according to the following equations:

eE sct
j ðxRÞ ¼ Esct

j ðxRÞ þ
max 8jE

sct
j ðxRÞ

h i
ffiffiffi
2

p nsðfj þ igjÞ; ð74Þ
fH sct
j ðxRÞ ¼ H sct

j ðxRÞ þ
max 8jH

sct
j ðxRÞ

h i
ffiffiffi
2

p nsðfj þ igjÞ; ð75Þ

where eE sct
j andfH sct

j are the noisy data and fj and gj are random numbers with normal distribution varying

from )0.5 up to 0.5.

In the inversion we assume that the unknown objects are located in the object domain D with size of 3k
by 3k by 3k. This domain D is divided into 30 by 30 by 30, hence in total we have 54,000 unknowns. In Figs.

6–8, we present the reconstructed results obtained with our numerical algorithm after 1024 iterations at

different x3 planes (the most top-left plot is x3 plane at �1:45k and the most bottom-right plot is x3 plane at
1:45k). In these figures the exact profile is indicated by the dashed lines. The reconstructed electric contrast



Fig. 7. Configuration of Fig. 1. The reconstructed imaginary part of the electric contrast vE given in different x3 plane. The contours of
the exact profile are given by the dashed lines.

Fig. 6. Configuration of Fig. 1. The reconstructed real part of the electric contrast vE given in different x3 plane. The contours of the
exact profile are given by the dashed lines.
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Fig. 8. Configuration of Fig. 1. The reconstructed magnetic contrast vH given in different x3 plane. The contours of the exact profile are
given by the dashed lines.
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is given in Fig. 6 (its real part) and Fig. 7 (its imaginary part) while the reconstructed magnetic contrast is

given in Fig. 8. After 1024 iterations the error in electric contrast and magnetic contrast are reduced to

ERRE ¼ 0:36 and ERRH ¼ 0:21. The error in contrast are defined as

ERRE
n ¼ kvEn � vEexactkD

kvEexactkD
and ERRH

n ¼ kvHn � vHexactkD
kvHexactkD

: ð76Þ

The errors in contrast as function of iterations are given in Fig. 9.

From the results in Figs. 6–8, we can conclude that the locations and the shapes of the two rectangular
objects are well reconstructed. By comparing Figs. 6 and 8, we clearly observe some cross-talk phenomena

between the permittivity (the real part of the electric contrast) and the permeability (the real magnetic

contrast). On the other hand, Fig. 7 indicates that there is only one lossy electric object. This positive effect

might be caused by the fact that there exists no object with magnetic loss, which has been accounted for in

our inversion algorithm.

Finally, one should also note that in addition to the contrast unknowns, the fields inside domain D are

also unknown. The total number of the field unknowns are 6� 63� 30� 30� 30 which is equal to the total

number of known incident fields on D.

4.2.2. Inversion of scatterers with both electric and magnetic contrasts

As the next example, we consider the problem where the unknown scatterers having both electric and

magnetic contrasts. The exact configuration is given in Fig. 4. The unknown cube O1 with dimension of k
by k by k is contained in another cube O2 with dimension of 2k by 2k by 2k. The contrasts of cube O1 are

vE ¼ 0:6þ i0:2 and vH ¼ 0:4, while the contrasts of cube O2 are vE ¼ 0:3þ i0:4 and vH ¼ 0:2. The center of
these cubes are located on the origin of the Cartesian coordinate system. The background is vacuum

(rb ¼ 0, eb ¼ e0 and lb ¼ l0). Fig. 10(a) presents the three-dimensional volume slices of the exact electric



Fig. 10. Configuration of Fig. 4. The exact profiles (a), the reconstructed profiles from simulated datawith 5%noise (b) and 10%noise (c).
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Fig. 9. The error in electric contrast ERRE (solid line) and magnetic contrast ERRH (dashed line) as function of iteration n of two

disjointed electric and magnetic scatterers.
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and magnetic contrast distributions at x1 ¼ 0 and at x3 ¼ 0. The real part of the electric contrast is given in

the left plots, its imaginary part is given in the middle plots and the magnetic contrast is given in the right

plots of Fig. 10(a).
The simulated data are generated using 30 sources distributed uniformly on three rings (10 sources on

each ring) with center at ð0; 0;�0:75kÞ, ð0; 0; 0Þ and ð0; 0; 0:75kÞ. The radius of these rings is 3k. The
measurement data (the vector scattered electric and magnetic fields) are measured on 90 receivers also

distributed uniformly on the same three rings as the rings contain the sources. We have 30 receivers per

ring. Hence, the total data points amount to 30� 90. It should be noted, since the unknown scatterers have

both electric and magnetic contrasts, that this example is more complicated than the previous one. Hence,

after generation of this data set, in order to see whether we have enough data points in order to obtain

reconstruction results with acceptable resolution, we added 5% and 10% pseudo-random noise of the
maximum amplitude of all excitation data per component according to (74) and (75).

In the inversion, we assume that the unknown scatterers are contained in the object domain D with size

of 3k by 3k by 3k. This test domain is subdivided into smaller rectangular domain of 30 by 30 by 30. Again,

we note that the problem is underdetermined since we have 6� 30� 90 data points and 2� 30� 30� 30

contrast unknowns. The reconstructed results after 1024 iterations of our numerical algorithm from sim-

ulated data with 5% noise are given in Fig. 10(b). From the results presented in the plots in Fig. 10(b), we

observe that the size, shape and the amplitude of the contrasts (permittivity, conductivity and permeability)

of the cubes O1 and O2 are very well reconstructed.
The reconstruction results of the data with higher level noise, namely 10% noise, are given in Fig. 10(c).

After 1024 iterations the error in electric contrast and magnetic contrast are reduced to ERRE ¼ 0:07 and

ERRH ¼ 0:21. The errors in contrast as function of iterations are given in Fig. 11. We still observe excellent

reconstructed size, shape and amplitude of the large cube. On the other hand, we observe that we can detect

its presence only from the reconstructed result of the magnetic contrast vH, see the right plot in Fig. 10(c).

Furthermore, the reconstructed magnetic contrast of the cube O2 is overestimated (it is vH ¼ 0:5 instead of

vH ¼ 0:4). These last drawbacks are caused by the presence of high level noise (10% noise of the maximum

amplitude of the data per component of the scattered fields). We expect that by adding more data points,
these negative effect of noise can be reduced.

We further also note that the reconstruction in the domain x3 6 � k and x3 P k is inferior to the one in

the domain of �k6 x3 6 k, see Figs. 10(b) and (c). This is simply caused by the absence of the sources and

receivers at those x3 levels.
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Fig. 11. The error in electric contrast ERRE (solid line) and magnetic contrast ERRH (dashed line) as function of iteration n of the

scatterers containing electric and magnetic contrast with 10% noise.
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5. Conclusion

In this paper we have presented a full vectorial three-dimensional nonlinear inversion algorithm with the
ability to reconstruct unknown objects which might have the electric (permittivity and conductivity) and/or

the magnetic (permeability) contrast. Since this type of inverse problem involves a large number of un-

knowns, it should be solved as efficiently as possible. To that end we have employed the so-called Multi-

plicative Regularized Contrast Source Inversion which has the following advantages above other full

nonlinear inversion methods known in the literature: (1) It does not solve a full forward problem in each

iterative step, in fact the computational complexity of each iteration of this algorithm is equal to number of

unknowns times one iteration of the computational complexity of linear conjugate gradient method. (2) It

uses a multiplicative constraint, hence the weighting parameter of the regularization factor used in this
algorithm is determined automatically. Numerical testings have illustrated that the presence numerical

algorithm is able to solve this full vectorial three-dimensional problem with electric and magnetic contrasts,

both in the forward and in the inverse scattering problem. When the measured scattered field in a sufficient

number of data points are sensitive to variations in the contrast of the object, we are able to construct these

variations. In practice, e.g., for a dielectric object, it means that we can reconstruct objects up to

kbdvmax � 25 where vmax denotes the maximum amplitude of the contrast and dmax denotes the maximum

diameter of the contrasting object.
Appendix A. Discretization procedure

Before discussing the discretization procedure of the integral equations for the electric and magnetic

contrast sources in (10) and (11), we first write them as

vEEinc
j ¼ wE

j � vEðk2bAE
j þ BE

j Þ; ðA:1Þ
vHZbH inc
j ¼ wH

j � vHðk2bAH
j þ BH

j Þ; j 2 1; 2; 3f g; ðA:2Þ
where the vectors BE

j and BH
j are given by

BE
j ¼ oj

X3
m¼1

omAfE;Hg
m þ ixlb

Zb

X3
g;n¼1

�j;g;nogAH
n ; ðA:3Þ
BH
j ¼ Zbr

0
b

X3
g;n¼1

�j;g;nogAE
n þ oj

X3
m¼1

omAfE;Hg
m ; j 2 1; 2; 3f g; ðA:4Þ

where �j;g;n denotes the Levi–Civita tensor. 1 The normalized vector potentials AE
j and AH

j are given by

AfE;Hg
j ðxÞ ¼

Z
D
gðx� x0ÞwfE;Hg

j ðx0Þ dvðx0Þ: ðA:5Þ

We assume that the domain D is a rectangular domain with boundaries along the x1, x2, and x3 directions as
shown in Fig. 12. We discretize the domain D uniformly in rectangular subdomains of dimension

Dx1 � Dx2 � Dx3 with center points
1 The values of the Levi–Civita tensor are given by �1;2;3 ¼ �2;3;1 ¼ �3;1;2 ¼ 1, �3;2;1 ¼ �2;1;3 ¼ �1;3;2 ¼ 1 and all other components are

zero.



Fig. 12. The spatial discretization grid of the computational domain D.
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x1;m ¼ x1;1=2 þ ðm� 1=2ÞDx1; m ¼ 1; . . . ;M ;
x2;n ¼ x2;1=2 þ ðn� 1=2ÞDx2; n ¼ 1; . . . ;N ;
x3;p ¼ x3;1=2 þ ðp � 1=2ÞDx3; p ¼ 1; . . . ; P ;

ðA:6Þ

in which xj;1=2 denotes the lower bound in the xj-direction. In each subdomain, we assume the material

contrast v to be constant, with value the same as the value of v at the center point

vE;Hm;n;p ¼ vE;Hðx1;m; x2;n; x3;pÞ: ðA:7Þ

Similar definitions for the vectorial field quantities are used. In view of the presence of spatial differenti-

ations in (A.3) and (A.4), the boundary of the domain D is chosen to be lied completely outside the

scattering objects, where the contrast quantities vanish. Then (A.1) and (A.2) are discretized as follows:

vEm;n;pE
inc
j;m;n;p ¼ wE

j;m;n;p � vEm;n;pðk2bAE
j;m;n;p þ BE

j;m;n;pÞ; ðA:8Þ
vHm;n;pZbH inc
j;m;n;p ¼ wH

j;m;n;p � vHm;n;pðk2bAH
j;m;n;p þ BH

j;m;n;pÞ; ðA:9Þ

for m ¼ 1; . . . ;M , n ¼ 1; . . . ;N and p ¼ 1; . . . ; P . The vector functions BE
j and BH

j in (A.3) adn (A.4) are

computed with finite difference rules [1]. The results are given by

BE
1;m;n;p ¼

AE
1;m�1;n;p � 2AE

1;m;n;p þ AE
1;mþ1;n;p

Dx21
þ
AE
2;m�1;n�1;p � AE

2;m�1;nþ1;p � AE
2;mþ1;n�1;p þ AE

2;mþ1;nþ1;p

4Dx1Dx2

þ
AE
3;m�1;n;p�1 � AE

3;m�1;n;pþ1 � AE
3;mþ1;n;p�1 þ AE

3;mþ1;n;pþ1

4Dx1Dx3

þ ixlb

Zb

AH
3;m;nþ1;p � AH

3;m;n�1;p

2Dx2

 
�
AH
2;m;n;pþ1 � AH

2;m;n;p�1

2Dx3

!
; ðA:10Þ
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BH
1;m;n;p ¼

AH
1;m�1;n;p � 2AH

1;m;n;p þ AH
1;mþ1;n;p

Dx21
þ
AH
2;m�1;n�1;p � AH

2;m�1;nþ1;p � AH
2;mþ1;n�1;p þ AH

2;mþ1;nþ1;p

4Dx1Dx2

þ
AH
3;m�1;n;p�1 � AH

3;m�1;n;pþ1 � AH
3;mþ1;n;p�1 þ AH

3;mþ1;n;pþ1

4Dx1Dx3

þ Zbr
0
b

AE
3;m;nþ1;p � AE

3;m;n�1;p

2Dx2

 
�
AE
2;m;n;pþ1 � AE

2;m;n;p�1

2Dx3

!
; ðA:11Þ

where BE
2;m;n;p, B

E
3;m;n;p, B

H
2;m;n;p and BH

3;m;n;p are obtained by permutations.

Next, we have to replace the continuous representation of the normalized vector potentials AfE;Hg
j ðxÞ in

(A.5) by discrete ones. In order to cope with the singularity of the Green function, we apply the weakening
procedure to the normalized vector potentials. After the weakening procedure, we compute the integral

over D in the normalized vector potentials numerically using a midpoint rule. We then arrive at

AfE;Hg
j;m;n;p ¼ Dx1Dx2Dx3

XM
m0¼1

XN
n0¼1

XP
p0¼1

Gm�m0 ;n�n0 ;p�p0w
fE;Hg
j;m0 ;n0 ;p0 ; ðA:12Þ

for m ¼ 0; . . . ;M þ 1, n ¼ 0; . . . ;N þ 1, and p ¼ 0; . . . ; P þ 1, where

Gm;n;p ¼
½1�1

2
ikbDx� expð12ikbDxÞ�1

1
6
pk2

b
Dx3

; m; n; p ¼ 0;

gðx1;m; x2;n; x3;pÞ; otherwise;

(
ðA:13Þ

in which Dx ¼ minðDx1;Dx2;Dx3Þ. Note that AfE;Hg
j;m;n;p are discrete convolutions in m0, n0, and p0 and can ef-

ficiently be computed by three-dimensional FFT routines [23]. Finally, we remark that this weakening of
the singularity is different from the technique used by van Bladel [11], where the spatial differentiations are

acting on the Green function directly, while we compute first the normalized vector potential AfE;Hg
j , in

which the Green function has been weakened by taking its spherical mean [26], and subsequently the

differentiations are carried out numerically on the normalized vector potential AfE;Hg
j . This technique has

proven [2,6] to yield an efficient, stable, and accurate algorithm.
Appendix B. Adjoint operators

The adjoint operators of the domain integral operators on D in (16) and (18) are defined through the

relationship

rE

rH

� �
;

LEE
D wE þLEH

D wH

LHE
D wE þLHH

D wH

" #* +
D

¼
LEE�

D rE þLHE�
D rH

LEH�
D rE þLHH�

D rH

" #
;

wE

wH

� �* +
D

; ðB:1Þ

where ½wE wH� and ½rE rH� are both in the same vector space. Substituting (18) and (19) with (A.10)–(A.13)

in the left-hand side of (B.1), and interchanging the various summations the adjoint operators are recog-

nized as

ðLEE�
D rE þLHE�

D rHÞj;m;n;p ¼ rEj;m;n;p � CE
j;m;n;p; ðB:2Þ
ðLEH�
D rE þLHH�

D rHÞj;m;n;p ¼ rHj;m;n;p � CH
j;m;n;p ðB:3Þ

for m ¼ 1; . . . ;M , n ¼ 1; . . . ;N , p ¼ 1; . . . ; P and where
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CfE;Hg
j;m;n;p ¼ Dx1Dx2Dx3

XMþ1

m0¼0

XNþ1

n0¼0

XPþ1

p0¼0

Gm�m0 ;n�n0 ;p�p0F
fE;Hg
j;m0 ;n0 ;p0 ; ðB:4Þ

in which

F E
1;m;n;p ¼ k2bs

E
1;m;n;p þ

sE1;m�1;n;p � 2sE1;m;n;p þ sE1;mþ1;n;p

Dx21

þ
sE2;m�1;n�1;p � sE2;m�1;nþ1;p � sE2;mþ1;n�1;p þ sE2;mþ1;nþ1;p

4Dx1Dx2

þ
sE3;m�1;n;p�1 � sE3;m�1;n;pþ1 � sE3;mþ1;n;p�1 þ sE3;mþ1;n;pþ1

4Dx1Dx3

þ Zbr0
b

sH3;m;nþ1;p � sH3;m;n�1;p

2Dx2

 
�
sH2;m;n;pþ1 � sH2;m;n;p�1

2Dx3

!
; ðB:5Þ
F H
1;m;n;p ¼ k2bs

H
1;m;n;p þ

sH1;m�1;n;p � 2sH1;m;n;p þ sH1;mþ1;n;p

Dx21
þ
sH2;m�1;n�1;p � sH2;m�1;nþ1;p � sH2;mþ1;n�1;p þ sH2;mþ1;nþ1;p

4Dx1Dx2

þ
sH3;m�1;n;p�1 � sH3;m�1;n;pþ1 � sH3;mþ1;n;p�1 þ sH3;mþ1;n;pþ1

4Dx1Dx3

þ ixlb

Zb

sE3;m;nþ1;p � sE3;m;n�1;p

2Dx2

 
�
sE2;m;n;pþ1 � sE2;m;n;p�1

2Dx3

!
; ðB:6Þ

where F E
2;m;n;p, F

E
3;m;n;p, F

H
2;m;n;p and F H

3;m;n;p are obtained by permutations and in which

sfE;Hg
j;m;n;pþ1 ¼ vfE;Hg

m;n;p r
fE;Hg
j;m;n;pþ1: ðB:7Þ

Since according to (B.4) m0 runs from 0 to M þ 1, n0 runs from 0 to N þ 1, and p0 runs from 0 to P þ 1, we

set in Eqs. (B.5) and (B.6)

rfE;Hg
j;m;n;p ¼ 0; m ¼ �1; 0;M þ 1;M þ 2 8n8p;
rfE;Hg
j;m;n;p ¼ 0; n ¼ �1; 0;N þ 1;N þ 2 8m8p;
rfE;Hg
j;m;n;p ¼ 0; p ¼ �1; 0; P þ 1; P þ 2; 8m8n:

ðB:8Þ

Note that CfE;Hg
j;m;n;p is discrete convolution in m0, n0, and p0 and these convolutions can be also computed

efficiently by three-dimensional FFT routines [23].
Appendix C. Data operator

Since the integral operators in (14) and (15) contain no singular point, these operators can directly be

discretized. After calculating the integral using midpoint rule, we arrive at

Esct
j ðxÞ ¼ k2bA

E
j ðxÞ þ BE

j ðxÞ; ðC:1Þ
ZbH sct
j ðxÞ ¼ k2bA

H
j ðxÞ þ BH

j ðxÞ; j 2 f1; 2; 3g; ðC:2Þ
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where the vectors BE
j and BH

j are given by

BE
j ðx1; x2; x3Þ ¼ oj

X3
m¼1

omAE
m ðx1; x2; x3Þ þ

ixlb

Zb

X3
m;n¼1

�j;m;nomAH
n ðx1; x2; x3Þ; ðC:3Þ
BH
j ðx1; x2; x3Þ ¼ Zbr

0
b

X3
m;n¼1

�j;m;nomAE
n ðx1; x2; x3Þ þ oj

X3
m¼1

omAH
m ðx1; x2; x3Þ; ðC:4Þ

in which

AfE;Hg
j ðx1; x2; x3Þ ¼ Dx1Dx2Dx3

XM
m¼1

XN
n¼1

XP
p¼1

gðx1 � x1;m; x2 � x2;n; x3 � x3;pÞwfE;Hg
m;m;n;p: ðC:5Þ

For the formulation of our inversion algorithm, we also need the adjoint operators of the integral repre-

sentations on S. The adjoint operators of the operator in the data equations in (52) are defined through the

relationship

qE

qH

� �
;

KEE
S wE þLEH

S wH

KHE
S wE þLHH

S wH

" #* +
S

¼
KEE�

S qE þKHE�
S qH

KEH�
S qE þKHH�

S qH

" #
;

wE

wH

� �* +
D

; ðC:6Þ

where ½wE wH� are vector quantities on D and ½qE qH� are vector quantities on S. Substituting the right-

hand side of (C.1) and (C.2) with (C.3)–(C.5) in the left-hand side of (C.6), and interchanging the various

summations the adjoint operators are recognized as

KEE�
S qE

�
þKHE�

S qH
	
j;m;n;p

¼ CE
j;m;n;p; ðC:7Þ
KEH�
S qE

�
þKHH�

S qH
	
j;m;n;p

¼ CH
j;m;n;p ðC:8Þ

for m ¼ 1; . . . ;M , n ¼ 1; . . . ;N , p ¼ 1; . . . ; P and where

CE
j;m;n;p ¼

X
8x2S

oj
X3
m¼1

omgðx1 � x1;m; x2 � x2;n; x3 � x3;pÞqE
m ðx1; x2; x3Þ

þ
X
8x2S

ixlb

Zb

X3
m;n¼1

�j;m;nomgðx1 � x1;m; x2 � x2;n; x3 � x3;pÞqE
n ðx1; x2; x3Þ; ðC:9Þ
CH
j;m;n;p ¼

X
8x2S

oj
X3
m¼1

omgðx1 � x1;m; x2 � x2;n; x3 � x3;pÞqH
m ðx1; x2; x3Þ

þ
X
8x2S

Zbr
0
b

X3
m;n¼1

�j;m;nomgðx1 � x1;m; x2 � x2;n; x3 � x3;pÞqE
m ðx1; x2; x3Þ: ðC:10Þ
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